鸿运国际(中国)

新聞中心
NEWS
關於產前檢查,那些你不知道的事!|母源細胞污染篇
2021-06-10 00:00

對於懷孕階段的准媽媽來說,按時進行各種孕期檢查是保證母胎健康的重要手段。在整個孕期中有多項檢測,介入性產前診斷是其中比較特殊的一項。在臨床中,介入性產前診斷是胎兒染色體檢查和單基因遺傳病診斷的主要方法,其操作流程為:在超聲波的引導下經孕婦腹部對胎兒相關樣本(絨毛、羊水、臍血)進行提取,然後進行細胞培養、分子遺傳學或生化遺傳學檢查,最後進行染色體診斷或基因診斷。


目前,常見的介入性產前診斷技術包括羊膜腔穿刺、絨毛穿刺、經皮臍血穿刺等。由於這些穿刺過程不可避免的經過母體,存在母源細胞污染(maternal cell contamination,MCC)的風險,再加上後續染色體檢查和基因診斷存在基因擴增,這使得微量的母體組織污染都可能嚴重干擾診斷結果,造成嚴重的臨床後果。


image.png

MCC普遍存在


image.png

MCC干擾結果判定


因此,鑑定所取胎兒組織是否存在MCC是產前診斷分子遺傳實驗室必需具備的鑑別技術。臨床中,MCC的排查方法經歷了以下幾個階段:


01 Kleihaure抗酸染色法


該方法是鑑別母血與胎血的傳統技術,技術原理是胎兒血紅蛋白比成人血紅蛋白更能抵抗酸變性[5]。Kleihaure抗酸染色法廣泛應用於母嬰溶血、妊娠期間外傷及陰道出血等臨床檢測,具有操作簡單、成本低廉等優點。然而,如果母體血液中胚胎血紅蛋白含量異常升高,如鐮狀細胞病或部分β地中海貧血病,染色過程中就會出現將母血誤鑒為胎兒血的錯誤結果。在18例用Kleihaure抗酸染色技術鑑定實驗中,至少有2例將母血錯誤地鑑定為胎兒血[6]


02 流式細胞術


該技術於70年代初發展起來,其工作原理是採用激光作為激發光源,利用熒光染料與單克隆抗體技術標記母源或胎源細胞,結合計算機系統對流動的單細胞懸液中單個細胞的多個參數信號進行數據處理分析,以此對細胞進行區分。相比Kleihaure抗酸染色法,流式細胞術具備快速、靈敏和特異的特點,但也存在儀器價格昂貴、操作繁瑣等弊端[7]


03 短串聯重複序列


短串聯重複序列(short tandem repeat,STR)是人類基因組DNA中廣泛存在的一類具有高度多態性和遺傳穩定性的遺傳標序列,核心序列為2-6個鹼基,經過幾次到幾十次串聯重複,構成特定的DNA片段遺傳標記。個體同一等位基因上這種序列重複次數不同,呈多態性並按孟德爾規律呈共顯性遺傳,因此選取幾個STR位點可作為一有效個體識別標誌,具有極強的特異性[8]。結合PCR技術,使得此技術具有極強的靈敏度。選取具有高雜合度和高多態性的STR位點,應用多重PCR對羊水、臍血等進行母血污染鑑定,具有極強的靈敏度,結果準確可靠[9]。目前,《低深度全基因組測序技術應用於產前診斷中的專家共識》明確建議,可使用STR檢測對產前樣本進行MCC判斷[10]


隨着分子時代的到來,STR檢測的優勢愈發突出,該技術準確、便捷、快速、低價,適宜在各級醫院及實驗室進行推廣,具有廣闊的應用前景。尤其在產前診斷方面,STR檢測可用於MCC排查、單親二體疾病輔助診斷、非整倍性染色體疾病快速診斷等,其臨床價值受到臨床醫生越來越多的肯定。


參考文獻:
1. Winsor EJ, Silver MP, Theve R, Wright M, Ward BE. Maternal cell contamination in uncultured amniotic fluid. Prenat Diagn. 1996 Jan;16(1):49-54. doi: 10.1002/(SICI)1097-0223(199601)16:1<49::aid-pd808>3.0.CO;2-U. PMID: 8821852.
2. Van Opstal D, Boter M, de Jong D, van den Berg C, Brüggenwirth HT, Wildschut HI, de Klein A, Galjaard RJ. Rapid aneuploidy detection with multiplex ligation-dependent probe amplification: a prospective study of 4000 amniotic fluid samples. Eur J Hum Genet. 2009 Jan;17(1):112-21.
3.  Wang Y , Li Y , Chen Y , et al. Systematic analysis of copy‐number variations associated with early pregnancy loss[J]. Ultrasound in Obstetrics & Gynecology, 2020, 55(1))。
4. Stojilkovic-Mikic T, Mann K, Docherty Z, Mackie Ogilvie C. Maternal cell contamination of prenatal samples assessed by QF-PCR genotyping. Prenat Diagn. 2005 Jan;25(1):79-83. doi: 10.1002/pd.1089. PMID: 15662689.
5. Martel-Petit V , Petit C , Marchand M , et al. Use of the Kleihauer test to detect fetal erythroblasts in the maternal circulation[J]. Prenatal Diagnosis, 2001.
6. Holcomb W L , Gunderson E , Petrie R H . Clinical use of the Kleihauer-Betke test[J]. Journal of Perinatal Medicine, 1990, 18(5):331-337.
7. Fernandes B J , Dadelszen P V , Fazal I , et al. Flow cytometric assessment of feto-maternal hemorrhage; a comparison with Betke-Kleihauer[J]. Prenatal Diagnosis, 2010, 27(7):641-643.
8. Edwards A I , Civitello A A , Hammond H A , et al. DNA Typing and Genetic Mapping with Trimeric and Tetrameric Tandem Repeats[J]. The American Journal of Human Genetics, 1991, 49(4):746-756.
9. 張清健, 方俊宇, 朱志勇,等. 短串聯重複序列連鎖分析進行產前診斷前母血污染鑑定的研究[J]. 中國實驗診斷學, 2015, 000(005):728-731.
10. 中華醫學會醫學遺傳學分會臨床遺傳學組, 中國醫師協會醫學遺傳醫師分會遺傳病產前診斷專業委員會, 中華預防醫學會出生缺陷預防與控制專業委員會遺傳病防控學組. 低深度全基因組測序技術在產前診斷中的應用專家共識[J]. 中華醫學遺傳學雜誌, 2019, 36(4):293-296.